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Abstract—We consider the problem of designing a network
of minimum cost while satisfying a prescribed survivability
criterion. The survivability criterion requires that a feasible
flow must still exists (i.e. all demands can be satisfied without
violating arc capacities) even after the disruption of a subset of
the network’s arcs. Specifically, we consider the case in which
a disruption (random or malicious) can destroy a subset of the
arcs, with the cost of the disruption not to exceed a disruption
budget. This problem takes the form of a tri-level, two-player
game, in which the network operator designs (or augments) the
network, then the attacker launches a disruption that destroys
a subset of arcs, and then the network operator attempts to
find a feasible flow over the residual network. We first show
how this can be modeled as a two-stage stochastic program from
the network operator’s perspective, with each of the exponential
number of potential attacks considered as a disruption scenario.
We then reformulate this problem, via a Benders decomposition,
to consider the recourse decisions implicitly, greatly reducing
the number of variables but at the expense of an exponential
increase in the number of constraints. We next develop a cut-
generation based algorithm. Rather than explicitly considering
each disruption scenario to identify these Benders cuts, however,
we develop a bi-level program and corresponding separation
algorithm that enables us to implicitly evaluate the exponential set
of disruption scenarios. Our computational results demonstrate
the efficacy of this approach.

Index Terms—Survivable network design, stochastic program-
ming, decomposition, separation, implicit optimization.

I. INTRODUCTION

Society depends heavily on networked systems such as the
electric power grid, water and gas distribution systems, com-
munication networks, and transportation systems. This reliance
makes it crucial to fortify and ensure the security of these
networks. The Northeast blackout in 2003 is frequently used
as an example of the severe consequences of an infrastructure
failure.

Many of these networks are also congested, with growth in
demand exceeding expansions in capacity. This forces systems
to operate close to their boundaries of feasibility. At the same
time, rapid technology developments have made these systems
so complex that human expertise is no longer sufficient to
secure operations. Automated tools must instead be developed
to detect system vulnerabilities.

Many recent research efforts have focused on vulnerability
analysis for critical infrastructure networks. [12] analyzed a

bioterror attack on the food supply. [6] examined the affects
of one or more arc failures in a transportation network in terms
of network travel time or generalized travel cost increase as
well as the behavioral responses of users due to the failure
in the network. Efforts such as these have produced signifi-
cant enhancements in models and algorithms for identifying
vulnerability. The next logical step, which is the goal of this
paper, is to improve systems to reduce these vulnerabilities,
abating the risk of failure.

It is often useful to represent physical networks with math-
ematical networks. For example, nodes can represent genera-
tors, load points, and junctions in a power system, with arcs
representing transmission lines. Supplies and demands at each
node correspond to generation and load, and arc capacities
represent transmission limits. Mathematical constraints then
approximate the physical dynamics of flow across the network.

The underlying structure of a network can be critical in
enabling us to understand and remedy its vulnerabilities. For
example in [10], it was shown that even though nonlinear
equations govern the flow of power through a network, vulner-
abilities of the underlying power system can be identified by
investigating the structural properties of the network. In this
paper, we specifically exploit network structure to solve the
problem of identifying the minimum-cost set of arc capacities
to install in the network while ensuring that a feasible flow
will be possible even after an arbitrary disruption of arcs that
is limited only by a disruption budget Γ.

Formally, we study the following problem:
Given a network G = (N,E), a set of candidate arcs Ec,

demand/supply on each node, capacities of all arcs, the costs
of constructing each arc in Ec, the cost of disrupting each
arc in E ∪ Ec, and a disruption budget Γ, find a set of arcs
En ⊂ Ec whose cumulative cost is minimum, such that for any
arc subset X whose cumulative disruption cost is less than Γ,
a feasible flow, satisfying all demand, exist on the network
G′ = (N, (E ∪ En) \X).

This problem poses significant challenges, largely due to
the nesting of multiple optimization problems. For a given
network and disruption, the third level problem is to minimize
the disruption cost. At the second level, therefore, the attacker
maximizes the impact of the disruption, subject to anticipating
the third-level optimization. Finally, at the first level, the



network operator must optimize the network design subject
to the anticipation of the attacker’s optimal response.

To formulate this problem as a traditional mixed-integer
linear program requires the enumeration of all possible attacks,
which may be exponentially large. For example, in the simplest
case where the budget limits the number of attacked edges to
be at most k, there will be approximately

(|E∪Ec|
k

)
attacks to

evaluate. Thus, this approach is intractable for all but very
small instances, and tractability depends on the use of an
alternative approach that can identify feasible solutions to
the network design problem, i.e. solutions that can survive
any attack within the disruption budget, without having to
explicitly consider all disruption scenarios. This is the focus
of our paper.

The rest of the paper is organized as follows. Section II
presents the single level network flow problem, the bilevel
network disruption problem, and the trilevel network design
problem. In Section III, we discuss cutting plane procedures
and develop an implicit optimization approach for solving
the trilevel network design problem. Section IV presents our
experimental design and computational results, and Section V
concludes the paper.

II. MODELS

Consider an undirected network G(N,E) with node set
N and undirected arc (candidate and existing) set E. To
differentiate between capacities, which are undirected, and
flows, which are directed, we denote the undirected link
between node i and j as {i, j} and the two corresponding
directed arcs as (i, j) and (j, i). Let arc set A represent the set
of all directed arcs corresponding to the set of undirected arcs
E, that is, A = {(i, j), (j, i)|{i, j} ∈ E}. Each arc {i, j} ∈ E
is associated with a construction cost cij and a capacity uij .
If bi > 0, then node i is a supply node, if bi < 0 then i is a
demand node, and bi = 0 for all other (transshipment) nodes.
Without loss of generality, we assume that

∑
i∈N bi = 0.

The goal is to design a minimum cost network such that a
feasible flow exists under any disruption within the disruption
budget Γ. In the first level, the network operator determines the
network design (or augmentation). We define a binary variable
xij , so that

xij =

{
1, if arc {i, j} is constructed,
0, otherwise,

∀{i, j} ∈ E

For simplicity of notation, we do not make a distinction
between existing and candidate arcs. For an existing arc
{i, j} ∈ E, we set xij to be one and fixed its construction
cost cij = 0.

The cost to the attacker of disrupting arc {i, j} ∈ E is given
by rij . We define a binary variable dij , so that

dij =

{
1, if arc (i, j) is disrupted,
0, otherwise,

∀{i, j} ∈ E

The arc disruption cost may reflect the probability of
random failure or the cost of disruption to an attacker. We

assume that the amount of disruption that can be realized is
constrained by a disruption budget Γ. That is

rT d ≤ Γ.

A. Trilevel Optimization Framework

We begin by presenting an explicit formulation of the
problem as a tri-level optimization problem. Recall the three
levels comprising the problem:

1) In the first level, the network operator (for example, the
Independent System Operator of a power system) makes
decisions about which arcs to either add or augment
(for example, by adding sensors, redundancy, or other
protective measures to improve the impenetrability of
the arc).

2) In the second level, a disruption (with cost ≤ Γ) occurs
on the newly-augmented network such that a subset of
the arcs are destroyed.

3) In the third level, the network operator responds to
the disruption by seeking to find a feasible recourse,
with flow able to satisfy demand without violating the
capacity constraints on the surviving arcs.

The goal of the overall problem is to find the minimum-cost
first stage decisions subject to the constraint that the third stage
problem will be feasible under any second stage decisions.

To present our explicit formulation of this tri-level problem,
we begin by assuming fixed values for a network design (x)
and disruption scenario (d). The third level problem is to
then minimize the penalty (pγ) associated with failing to fully
satisfy demand. If the optimal objective value is zero, then the
third level problem is in fact feasible. Note that the penalty
term p must be chosen to be large enough such that the penalty
cost for an infeasible third stage problem will dominate the
objective function when making first stage decisions, ensuring
that in the final solution the third stage will be feasible for
any valid disruption in the second stage.

min
f,γ

pγ (1a)

s.t.
∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji = bi(1− γ) ∀i ∈ N (1b)

fij , fji ≤ uij(xij − dij) ∀{i, j} ∈ E (1c)
fij ≥ 0 ∀(i, j) ∈ A (1d)
γ ≥ 0 (1e)

In this statement of the third level of the problem, note
that (x) and (d) are input parameters, passed from the two
upper levels, rather than decision variables. Objective (1a) is
to minimize the fraction of demand that goes unmet (i.e. the
load shed). (1b) are flow balance constraints that require the
net flow into and out of a node to be equal to the demand
(or supply). It is possible that given a network design (x)
there may not exist a feasible flow post disruption (d). Thus
we introduce a scaling variable γ ∈ [0, 1] corresponding to



fraction of demand shed (e.g. not satisfied). An γ value of zero
indicates that all of the demand is satisfied and a value of one
indicates that none of the demand is satisfied. (1c) and (1d)
are arc capacity upper and lower bounds, respectively. Note
that the upper bound on arc {i, j} depends on whether the arc
is part of the network as defined in the first stage problem
(xij) as well as whether the arc has been disrupted as defined
in the second stage problem (dij). We assume, for notational
simplicity, that flow lower bounds are zero but a more general
model with nonnegative lower bound is applicable as well.

We now step up one level to the second level. We assume
that the network is vulnerable to disruptions due to both
malicious and natural causes, and we wish to secure the
network against all possible disruptions. We assume that when
an arc is disrupted, all of its capacity is lost. In this sense,
the disruption we are considering is a worst-case disruption.
For critical infrastructure protection, it is imperative to look
at worst-case scenarios. One reason for this is that critical
infrastructure can easily be the target of a malicious attack by
an intelligent adversary. Another is that even highly unlikely
events can cause huge disturbances, as evidenced by the
Northeast blackouts [3][10], due to the paramount importance
of these critical infrastructures from the perspectives of both
security and the economy.

Given that we want to ensure against any possible disruption
(with cost ≤ Γ), we assume that for any given network design
(defined by the decision variables (x)), the most damaging
disruption will realize. We refer to this problem as the network
disruption problem (NDP) and formulate it as follows.

max
d

min
f,γ

pγ (2a)

s.t.
∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji=bi(1− γ) ∀i∈N (2b)

fij , fji ≤ uij(xij − dij) ∀{i, j} ∈ E (2c)
fij ≥ 0 ∀(i, j) ∈ A (2d)
γ ≥ 0 (2e)

rT d ≤ Γ (2f)
d ∈ {0, 1}n (2g)

The objective (2a) is to choose the disruption scenario for
which the network operator’s corresponding optimal recourse
will have the highest penalty cost. The constraints look the
same as in the third stage problem, except that (d) is now a
decision variable rather than an input parameter. In addition,
constraint (2f) is added to restrict the feasible disruption
scenario to be one in which the disruption budget is not
violated. The disruption cost is assumed to be an additive
function of the disrupted arcs. Observe, that if xij is equal
to one then dij can take on either one or zero. If xij is zero,
then constraints (2c) and (2d) together force the attack decision
on the corresponding component to be zero as well. This is
equivalent to the statement that non-existent components are
not disruptable.

Problem of the form (2) are commonly referred to in the
literature as network interdiction problems. For example, [13]
proposed an algorithm for performing sensitivity analysis on
maximum flow networks. More recently, [9] examines the
multicommodity network interdiction problem under discrete
and continuous attacks.

Work on network interdiction problems has brought a lot
of insights to the vulnerabilities of networks, and has paved
the way for a higher objective: How do we build/augment net-
works in the first place, so as to limit their vulnerability? This
new problem, which embeds the bi-level network interdiction
problem as constraints, yields a tri-level optimization problem.

Tri-level optimization problems are extremely challenging
and, typically, cannot be solved without much difficulty. [2]
proposed general bi-level and tri-level programming mod-
els for defending critical infrastructure. [11] examined the
problem of augmenting a network under various disruption
scenarios, assuming disruptions may be selected based on
arc capacities, initial flows, and minimizing the maximum
profit from transmitting flows. [14] proposed a nested bi-level
programming approach for the augmentation of electric power
grids.

In the network design problem which we examine, we
embed the bi-level NDP problem, yielding a tri-level optimiza-
tion problem, which we refer to as the network augmentation
problem (NAP).

min
x

max
d

min
f,γ

∑
{i,j}∈E

cijxij + pγ (3a)

s.t.
∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji=bi(1− γ) ∀i∈N (3b)

fij , fji ≤ uij(xij − dij) ∀{i, j} ∈ E (3c)
fij ≥ 0 ∀(i, j) ∈ A (3d)
γ ≥ 0 (3e)

rT d ≤ Γ (3f)
d ∈ {0, 1}n (3g)

x ∈ {0, 1}n

The objective (3a) is to minimize the total network design
cost as well as the penalty associated with the worst-case
disruption, given the network design (x). By setting the
penalty cost p adequately large, the first stage decisions will
always yield a network design that can survive a feasible
attack, so long as such a network design exists. Observe that
the constraints of NAP are the same as those of NDP except that
(x) is now a decision variable instead of an input parameter.
Finally, note that the non-negativity constraints (3d) prevent
an arc from being attacked in the second stage unless that
arc is created (or is pre-existing) in the first stage, else the
right-hand side of (3c) would be negative.

III. SOLUTION APPROACHES

We begin by making the observation that given a finite
disruption budget Γ (in the simplest case, this might be an



upper bound on the number of arcs that could be disrupted),
the number of possible disruption scenarios is finite (although
it may be extremely large). Let S be the total number of
possible disruption scenarios with cost less than or equal to
the given disruption budget Γ.

One approach is to explicitly consider all possible disruption
scenarios (s = 1, · · · , S) in determining the optimal network
augmentation. By explicitly considering all possible disruption
scenarios, we can reduce the tri-level optimization model to a
single mixed integer linear program (MILP), although it may
be extremely large. We denote this model as the extensive form
(EF) and state it as follows.

min
x,f,γ,θ

∑
{i,j}∈E

cijxij + pθ (4a)

s.t. γs ≤ θ ∀s ∈ S (4b)∑
j:(i,j)∈A

fsij −
∑

j:(j,i)∈A

fsji = bi(1− γs)

∀i ∈ N, s ∈ S (4c)
fsij , f

s
ji ≤ uij(xij − dsij) ∀{i, j} ∈ E, s ∈ S (4d)

fsij ≥ 0 ∀(i, j) ∈ A, s ∈ S (4e)
θ, γs ≥ 0 (4f)
xij ∈ {0, 1} ∀{i, j} ∈ E (4g)

Observe that in EF, ds is an |E|-dimensional vector (of
parameters) corresponding to disruptions of each arc ({i, j} ∈
E) in a disruption scenario s. The objective (4a) is to minimize
the network design cost and shortage cost under the worst-
case disruption scenario, which will naturally vary with the
network design (x). Constraints (4b) ensure that the operating
cost θ is lower bounded by the operating cost under each
disruption scenario. Since the objective is to minimize total
cost, θ will attain a value equal to the maximum operating
cost across all scenarios for any given network design (x).
Constraints (4c) are flow balance constraints for each node-
disruption scenario pair. Constraints (4d) are arc capacity
constraints given network design (x) and disruption scenario
(ds). Since (ds) is a parameter, if an arc (i, j) is disrupted
in a given scenario s, we can replace (x− d) with simply 0.
In this scenario, the capacity of arc (i, j) is zero regardless
of whether the arc is constructed or not. Alternatively, if arc
(i, j) is not disrupted in scenario s, we replace the right hand
side of constraint (4d) with simply (xij). Finally, (4e–4g) are
variable non-negativity and integrality constraints.

EF is a large-scale MILP, with O(|E|) binary variables and
O((|E|+|N |)·S) continuous variables, and O((|E|+|N |)·S)
constraints. Additionally, the linear programming relaxation
of (4) will likely be weak, as several values of (x) will be
fractional at optimality for system components whose capac-
ities are not fully utilized. Therefore, solving (4) directly via
a branch-and-bound approach will most likely be intractable
for all but the smallest instances (which we demonstrate via
computational experiments in section IV).

A. A Benders Decomposition

The EF formulation has a large number of variables and
constraints. For instances involving large networks and/or a
large disruption budget (and thus a large number of disruption
scenarios S), formulation (4) can become computationally in-
tractable. In this section, we present an alternative formulation
with only |E| binary variables (x) and one continuous variable
θ but possibly an extremely large number of constraints. We
use linear programming duality to generate valid inequalities
for the projection of the natural formulation onto the space
of the (x) variables. In essence, we use a variant of Benders
Decomposition in which we generate valid inequalities corre-
sponding to “optimality” cuts.

Given a network design (x) and disruption scenario (ds),
consider the following linear program, denoted as the primal
subproblem PSP(x, ds), to determine a flow (fs) that mini-
mizes the demand shortage γs under disruption scenario (ds).

θs(x, ds) = min
fs,γs

γs (5a)

s.t. (αs)
∑

j:(i,j)∈A

fsij −
∑

j:(j,i)∈A

fsji = bi(1− γs)

∀i ∈ N (5b)
(βs) fsij , f

s
ji ≤ uij(xij − dsij) ∀{i, j} ∈ E (5c)

fsij ≥ 0 ∀(i, j) ∈ A (5d)
γs ≥ 0 (5e)

The objective (5a) is to minimize demand shortages given
the prescribed network design (x) and disruption scenario s.
Let the optimal objective value be given by θs(x, ds). Clearly,
if θs(x, ds) > 0, then there does not exist a feasible flow
satisfying all demands, and if θs(x, ds) = 0, then a feasible
flow does exist satisfying all demand.

In turn, we can formulate the dual of this problem as
DSP(x, ds):

max
αs,βs

∑
i∈N

biα
s
i +

∑
{i,j}∈E

uij(xij − dsij)(βsij + βsji) (6a)

s.t. αsi − αsj + βsij ≤ 0 ∀(i, j) ∈ A (6b)∑
i∈N

biα
s
i ≤ 1 ∀i ∈ N (6c)

βsij ≤ 0 ∀(i, j) ∈ A (6d)

Since PSP(x, ds) has a finite optimal solution (in the worst
case, γs is equal to 1 for all s) the dual DSP(x, ds) also has
a finite optimal solution and, by strong duality, the optimal
solutions coincide. Therefore (6) has a finite optimal solution,
and the in fact, an optimal extreme point. Thus we can re-write
the sub-problem as



θs(x, ds) = max
`=1,··· ,L

(∑
i∈N

biα
`
i

+
∑
{i,j}∈E

uij(xij−dsij)(β`ij + β`ji)

)
(7)

where L is the set of extreme points corresponding to the
polyhedron characterized by inequalities (6b)–(6d). Note that
the feasible region of (6) does not depend on the network
design (x) or the disruption scenario (ds), which only affects
the objective function.

Alternatively, θs(x, ds) is the smallest number θs such that∑
i∈N

biα
`
i +

∑
{i,j}∈E

uij(xij−dsij)(β`ij + β`ji) ≤ θs

` = 1, · · · , L (8)

Observing that θs ≤ θ for all s and using (8), we can
reformulate (4) as

min
x,θ

∑
{i,j}∈E

cijxij + pθ (9a)

s.t.
∑
i∈N

biα
`
i +

∑
{i,j}∈E

uij(xij−dsij)(β`ij + β`ji) ≤ θ

` = 1, · · · , L, s = 1, · · · , S (9b)
xij ∈ {0, 1} ∀({i, j} ∈ E (9c)
θ ≥ 0 (9d)

Formulation (9) has an exponential number of constraints,
so we solve this via Benders decomposition (BD). At a typical
iteration of BD, we consider the relaxed master problem (RMP),
which has the same objective as problem (9) but involves only
a small subset of the constraints. We briefly outline BD below.
For a detailed treatment of BD please refer to [1].

Let t be the iteration counter and let the initial RMP be
problem (9) without any constraints (9b).

Algorithm 1 Benders Decomposition
1: t← 0
2: solve RMP and let (xt, θt) be the solution
3: for s = 1, · · · , S
4: if DSP(xt, ds) > θt

5: add cut (8) to RMP
6: end if
7: end for
8: if ∀ s = 1, · · · , S, DSP(xt, ds) ≤ θt
9: (xt, θt) is optimal (EXIT)

10: else
11: t← t+ 1 and GOTO step 2
12: end if

By using a Benders reformulation, we are able to decom-
pose the extremely large MILP (4) into a master problem
and multiple subproblems, one for each disruption scenario.

This enables us to solve larger instances, which would not be
possible by a direct solution of the EF formulation. However,
the extremely large number of disruption scenarios make
direct application of Benders ineffective for instances with
large networks and/or a large disruption budget. In the next
section, we develop a custom cut-generation based algorithm
that evaluates all possible disruption scenarios implicitly using
a separation oracle.

B. Delayed Scenario Generation

In practice, networks may be extremely large and the num-
ber of disruption scenarios may be too large to be considered
explicitly (even with a BD approach). Our goal is to instead use
an oracle that implicitly evaluates all disruption scenarios and
either identifies a violated one (with cost ≤ Γ) or provides
a certificate that no such disruption scenario exists. If such
a disruption exists, we add this disruption scenario to a
disruption list and proceed to solve the updated list of scenario
sub-problems. If no such disruption exists, then the current
network design (x) is optimal and we terminate. The proposed
implicit optimization approach is summarized by the flowchart
in Fig. 1.

Fig. 1. Proposed implicit optimization approach.

We next describe the oracle. Recall that we are trying to
solve bi-level network disruption problem (2), i.e. given an
(x), we want the (d) that maximizes the minimized shortage.
We state (without proof, for the sake of brevity) that this
problem can be reformulated as (10).

Theorem 3.1: Problem (2) has an equivalent MILP formu-
lation as follows:

NDP(x) = max
d,α,β

∑
i∈N

biαi +
∑
{i,j}∈E

uijxij(βij + βji) (10a)

s.t.
αi − αj + βij − β̂ijdij ≤
αj − αi + βji − β̂jidij ≤

}
0 ∀{i, j} ∈ E (10b)∑

i∈N
−biαi ≤ 1 ∀i ∈ N (10c)

rT d ≤ Γ (10d)
βij ≤ 0 ∀(i, j) ∈ A (10e)
dij ∈ {0, 1} ∀{i, j} ∈ E (10f)

This is a standard MILP with O(|E|) binary variables,
O(|N | + |E|) continuous variables, and O(|E| + |N |) con-



straints that can be solved much more easily than the ex-
ponential number of individual disruption scenarios. Similar
reformulations for bi-level problems appear in [2],[11].

Algorithm 2 Delayed Scenario Generation
1: t← 0
2: solve RMP and let (xt, θt) be the solution
3: solve NDP(xt) let (dt, αt, βt) be the solution
4: if NDP(xt) > θt . (dt) new scenario
5: t← t+ 1 and add (dt) to scenario list
6: for s = 1, · · · , t
7: if DSP(xt−1, ds) > θt

8: add cut (8) to RMP
9: end if

10: end for
11: GOTO step 2
12: else
13: (xt, θt) is optimal (EXIT)
14: end if

At each iteration, either a new disruption is identified and
added to the scenario list, leading to the generation of a new
(violated) Benders cut, or the algorithm terminates with the
current solution being optimal (if no new disruption is found).
Since the number of possible disruptions is finite, DSG will
terminate after a finite number of iterations.

Although DSG is finitely convergent, the efficiency of the
algorithm will largely be dictated by the strength of the RMP
and NDP formulations and the order in which the disruption
scenarios are identified. In the next section, we exploit the
problem structure to take advantage of special network prop-
erties. Specifically, we leverage the fact that max-flow equals
min-cut – to find a feasible disruption for which the min
cut is below a certain threshold. If this min cut translates
to a max flow less than the total demand of our network,
then the network is infeasible – i.e. we have identified a
disruption scenario that leads to demand shortage. Using this
insight, we derive a strong formulation of NDP and used
this formulation to demonstrate the efficacy of DSG through
extensive computational experiments in section IV.

C. A Strong NDP Formulation

The performance and scalability of the approach presented
in the previous section directly depends on our ability to iden-
tify disruptions efficiently. In this section, we present a strong
formulation that is designed specifically for inhibiting flows in
networks. This formulation has been previously used in [10],
[5]. Here we describe the formulation for completeness.

The network disruption problem seeks to minimize the
maximum flow of a network in a cost optimal way. Instead
of solving the bilevel optimization problem (2) or its corre-
sponding MILP reformulation (10), we use the duality between
maximum flow and minimum cut, and reformulate the problem
to remove lines from a given network so that there exists a cut
in the resulting network, whose capacity is less than the total
demand in the system. This means that in the resulting system

the demand cannot be satisfied completely and thus we have
a disruption within the given budget.

Let us add two special nodes to the network: a source s
and a terminal t, and connect each supply node i to s with
a capacity equal to the supply capacity of the node usi = bi.
Similarly, we connect each demand node j to the terminal t
so that ujt = bj . We will refer to the new arc set that contains
these new arcs as E′. A cut in a network is defined by a
bipartitioning of its nodes as N1 and N2 = N \N1 such that
s ∈ N1 and t ∈ N2. The capacity of this cut is defined by the
cumulative capacity of arcs from N1 to N2, i.e.,

∑
i∈N1,j∈N2

uij .

We define a binary variable ρi for each node i ∈ N , so that

ρi =

{
0, if i ∈ N1,
1, if i ∈ N2,

We also define a binary variable ωij ∈ [0, 1] for each arc. We
will later show that ωij only takes values in {0, 1}. Binary
variables dij identify lines that are disrupted. We can formulate
the strong NDP as follows.

min
ρ,ω,d

∑
uijwij (11a)

rT d ≤ Γ (11b)
ρi − ρj + ωij + dij ≥ 0, (11c)
ρs = 0, (11d)
ρt = 1; (11e)
ρi ∈ {0, 1} ∀i ∈ N (11f)
dij ∈ {0, 1} ∀{i, j} ∈ E (11g)
ωij ∈ [0, 1] ∀{i, j} ∈ E′ (11h)

The objective function (11a) measures the capacity of the cut,
and if it is below the total demand, the d variables identify
a new disruption scenario that fails the network. Constraint
(11b) guarantees that the attack is within budget. Constraint
(11c) ensures that any arc directed from the source side N1

to the terminal side N2 is either disrupted (dij = 1) or
contributes to the cut (ωij = 1). Note that ωij = 0 in any
other case due to the objective function, thus ω takes only
binary values even though it is a continuous variable. This
formulation offers significant improvements over the general
NDP formulation (10). In our computational experiments, we
observed formulation (11) to run 3 to 5 times faster than the
general NDP formulation, even for small instances, with the
improvement gap increasing for larger problems. The NDPs
can be solved within seconds even for very large problems
and generous budgets. The reason for this speedup is that the
gap between this formulation and its relaxation is very small,
as has been analyzed in [5].

IV. COMPUTATIONAL EXPERIMENTS

To test the performance of our proposed approach, we
conducted computational experiments on a number of test
cases, under a variety of parameters. All experiments were
run on a machine with four quad-core 2.93G Xeon with 96G



TABLE I
RUN TIMES FOR DIFFERENT SOLUTION APPROACHES

Test No. poss.
Systems N k scen. EF BD DSG

1 82 1 82 0 0 0
2 358 1 358 20 4 4
3 444 1 444 33 11 19
4 123 2 > 7K 81722 34 1
5 537 2 > 140K x 2142 4
6 666 2 > 200K x 5924 174
7 164 3 > 700K x 3045 9
8 716 3 > 60M x x 398
9 888 3 > 116M x x 653

10 205 4 > 72M x x 67
11 895 4 > 26B x x 2708
12 1110 4 > 63B x x 11999

of memory. For all computational experiments, a single CPU
and up to 8GB of RAM was allocated. CPLEX 11.2/Concert
Technology v.27 was used for solving all mathematical pro-
grams.

Altogether, we considered twelve problem instances. We
considered three different networks, derived from the IEEE 30-
node, 118-node, and 179-node test systems. For each of these
networks, we considered four different disruption budgets.
Specifically, we limited the attacker to disrupting at most one,
two, three, or four arcs in the network. In all twelve instances,
the power flow was approximated by a simple transportation
model.

Table I allows us to compare the run times for the three
different approaches to solving the problem. For each of the
twelve instances, N provides the number of disruptable arcs.
For each test instance, we replicate the set of existing arcs
multiple times to ensure that we have enough candidate arcs
to yield a feasible network design. Next, k is the maximum
number of arcs that can be disrupted by the attacker. In this
case, the attack budget is given by k and the cost of disruption
is one for all arcs. The number of possible scenarios, i.e. the
size of the set of feasible disruptions, appears in the next
column. Note that for all but the smallest instances, this is
a very large number – approaching the hundreds of billions in
the largest case.

The remainder of this table provides the run time (in sec-
onds) for each instance under the three different approaches.
Note that the first approach, the extensive form (EF), can only
solve the smallest of instances. This is because of the sheer
size of the problem for each contingency, a full network flow
problem must be embedded in the formulation. As the number
of contingencies grows, this quickly becomes intractable.

The second approach, BD, bypasses this problem via a
Benders decomposition, with corresponding delayed cut gen-
eration. However, this still suffers from the exponential growth
in the number of disrupton scenarios – for each contingency,
a dual subproblem must be solved to check for violated
Benders cuts to add to the master problem. We see that larger
problem instances can be solved, relative to EF, but that the
BD approach nonetheless cannot solve the largest problem
instances.

TABLE II
DSG RUNTIME BREAKDOWN

Test No. poss. No. eval. Total RMP NDP SP
Systems scen. scen. time time time time

1 82 3 0 0 0 0
2 358 17 4 0 2 1
3 444 51 19 1 7 10
4 > 7K 15 1 0 1 0
5 > 140K 58 4 3 26 12
6 > 200K 158 174 6 50 118
7 > 700K 43 9 2 5 2
8 > 60M 128 398 25 303 70
9 > 116M 284 653 21 193 439

10 > 72M 156 67 7 23 37
11 > 26B 359 2708 399 1698 612
12 > 63B 899 11999 4939 1822 5237

In the DSG approach (using the strong NDP formulation
(11)), we see that all instances of the problem can be solved, in
almost all cases in under an hour and frequently in only a few
minutes. This is a result of the combination of the strength of
the Benders cuts, enabling the problem to be solved in a very
limited number of iterations, and also the fact that we are able
to implicitly evaluate the contingencies in order to identify a
violated contingency and then quickly find its corresponding
Benders cut.

Table II provides us with further evidence to support this.
For each instance, we see the total number of possible dis-
ruption scenarios and then the number of disruption scenarios
for which corresponding cuts were actually generated (this
is the total number of iterations). Clearly, it is a very tiny
fraction of the possible number of disruptions, which is critical
to the tractability of the approach. The remaining columns
of this table breakdown the total run time by time spent on
the three components of the algorithm – the restricted master
problem (RMP), which identifies a candidate network design
(x); the network disruption problem (NDP), which identifies a
contingency that cannot be overcome by the current network
design; and the scenario subproblems (SP), which generates
the Benders cuts. It is interesting to note that no one category
consistently dominates the total time.

Finally, the fact that our proposed approach enables us
to find optimal solutions to the twelve problem instances
in tolerable run time provides us with the ability to also
conduct analysis on the quality of the solutions. Figure 2
provides some introductory insights into the trade-off between
investment in security and potential shortfalls for the IEEE
118-node system. The figure shows the total investment cost
(to secure the network) as a function of allowable demand
shortages for each of the four disruption budgets. Observe,
that the IEEE 118-node system is largely secure for k = 1. For
higher disruptions, a significant cost is incurred for completely
securing the system (zero shortage). The vertical dashed line
indicates that significant investment cost savings are attainable
if a one percent demand shortage is permitted. On the other
hand, if we restrict the network investment budget to $6 billion
(highlighted by the dashed horizontal line), we can assess the
security of the network against the various disruption budgets.
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Fig. 2. Investment cost and demand shortage trade-off

V. CONCLUSION

Network security is critical to society in many forms –
telecommunications, transportation, water, and electricity, to
name a few. Concerns exist over both malicious, intentional
attacks and random failures tied to systems that are rapidly ap-
proaching the boundaries of their capacity. With the increased
size and complexity of these networks, direct human analy-
sis and operational control are no longer possible. Instead,
automated tools are required to ensure the security of these
networks.

Substantial research has been invested in identifying net-
work vulnerabilities, often through bi-level optimization ap-
proaches. In this paper, we have expanded this research
with the goal of identifying cost-effective ways to secure
a network against such vulnerabilities. We first pose this
problem as an explicit tri-level optimization problem. This
allows us to clearly state the problem, but is not tractable
in practice because of the enormous size – the formulation
must simultaneously capture separate network flow problems
for each of an exponential number of disruption scenarios. We
next consider a Benders decomposition-based approach to the
problem. This is certainly an improvement, with Benders cuts
replacing the exponential number of embedded network flow
problems. In order to identify the Benders cuts, however, each
of the exponential number of contingencies must be evaluated,
which still greatly limits the size of the problem instance that
can be solved in an acceptable run time.

To overcome this problem, we propose the new approach of
using a separation problem to implicitly consider the full set of
contingencies in a much more efficient fashion. Each iteration
of the separation problem yields a contingency that, relative to
the current network design, would lead to infeasible network
flows. For such a contingency, we can then directly generate
the associated Benders cut. This new approach is demonstrated
to be much more effective in solving problem instances of a
realistic size in acceptable run times.

This research also lays the foundation for future, more
general research on tri-level optimization problems and, in
particular, survivable network design. In particular, we are
focused on first expanding the simple network flow problem

in the third stage to more complex (and realistic) power flow
models. Beyond this, we will be working to generalize the
approach to the broad class of problems where the third stage
problem is not restricted only to be a linear program. Finally,
we will consider the case where third stage decisions have
non-linear form.

ACKNOWLEGMENTS

This work was funded by the applied mathematics program
at the United States Department of Energy and Laboratory Di-
rected Research and Development Program of Sandia National
Laboratories, a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s
National Nuclear Security Administration under contract DE-
AC04-94AL85000. We thank Jean-Paul Watson for many
productive discussions.

REFERENCES

[1] J.F. Benders, Partitioning Procedures for Solving Mixed-Variables Pro-
gramming Problems, Numerische Mathematik, 10 (1962), pp. 237–260.

[2] G. Brown, M. Carlyl, J. Salmerón and K. Wood, Defending Critical
Infrastructure, Interfaces, 6 (2006), pp. 530–544.

[3] D. Bienstock and A. Verma, The N–k problem in power grids: new
models, formulations, and numerical experiments, SIAM J. Optim., 20
(2010), pp. 2352–2380.

[4] D. Bienstock and A. Verma, Using mixed-integer programming to solve
power grid blackout problems, Discrete Optimization, 4 (2007), pp. 115–
141.

[5] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg,
A decomposition-based approximation for network inhibition, Network
Interdiction and Stochastic Integer Programming, D.L. Woodruff, eds.,
(2003), pp. 51–66.

[6] A. Chen, C. Yang, S. Konsomsaksakul, and M. Lee Network-based Acces-
sibility Measures for Vulnerability Analysis of Degradable Transportation
Networks, Networks and Spatial Economics, 7 (2007), pp. 241–256.

[7] K.J. Cormican, D.P. Morton and R. Kevin Wood, Stochastic Network
Interdiction, Operations Research, 46 (1998), pp. 184–197.

[8] E. Israeli and R. Kevin Wood, Shortest-Path Network Interdiction, Net-
works, 40 (2002), pp. 97–111.

[9] C. Lim and J.C. Smith Algorithms for discrete and continuous multicom-
modity flow network interdiction problems, IIE Transactions, 39 (2007),
pp. 15–26.

[10] A. Pinar, J. Meza, V. Donde and B. Lesieutre, Optimization Strategies
for the Vulnerability Analysis of the Electric Power Grid, SIAM J. Optim.,
20 (2010), pp. 1786–1810.

[11] J.C. Smith, C. Lim and F. Sudargho, Survivable network design
under optimal and heuristic interdiction scenarios, Journal of Global
Optimization, 38 (2007), pp. 181–199.

[12] L.M. Wein and Y. Liu, Removing arcs from a network, Operations
Research, 12 (1964), pp. 934–940.

[13] R. Wollmer, Analyzing a bioterror attack on the food supply: The case of
botulinum toxin in milk, Proc. National Acad. Sci., 102 (2005), pp. 9984–
9989.

[14] Y. Yao, T. Edmunds, D. Papageorgiou and R. Alvarez, Trilevel Optimiza-
tion in Power Network Defense, IEEE Transactions on Systems, Man, and
Cybernetic, 37 (2007), pp. 712–718.


